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Abstract

A {0,2}-matching is an assignment of the integers 0,2 to the edges of

a graph G such that for every node the sum of the integers on the incident

edges is at most two. A tour is the 0-1-incidence vector of a hamilton

cycle. We study the polytope P(G), defined to be the convex hull of the

{0,2}-matchings and tours of G. When C has an odd number of nodes,

the travelling salesman polytope, the convex hull of the tours, is a facet

of P(G). W- obtain the following results:

i) We completely characterize those facets of P(G) which can be

induced by an inequality with 0-1-coefficients.

ii) We prove necessary properties for any other facet inducing inequality,

and exhibit a class of such inequalities with the property that for any

pair of consecutive positive integers, there exists an inequality in our

class whose coefficients include these integers.

iii) We relate the facets of P(G) to the facets of the travelling

salesman polytope. In particular, we show that for any facet F of the

travelling salesman polytope, there is a unique facet of P(G) whose

intersection with the travelling salesman polytope is exactly F.

I
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1. Introduction

Let G = (V,E) be a finite undirected graph and let c (c j E E)
be a vector of real edge costs. The infamous travelling salesman problem

is to find a hamilton cycle of G, the sum of whose edge costs is minimum.

(If G has no hamilton cycle, this fact should be discovered.) A major

obstacle to be overcome in this process is the verification of a proposed

optimum tour. Indeed, even if one has discovered the optimal tour, but is

forced to convince a nonbeliever of the tours optimality, it is generally

necessary to perform a quantity of work effectively as large as that per-

formed in finding the optimum tour in the first place.

This need for a good optimality condition prompted the development of the

area of polyhedral combinatorial optimization. This approach was pioneered

by Jack Edmonds in solving matching problems [3], matroid optimization

problems [4], [5] and as a special case, branching problems [6]. The idea

is to represent the feasible solutions to a discrete optimization problem

by their incidence vectors and consider the convex hull of these vectors
n

viewed as points of M . If a linear system sufficient to define such a

polyhedron can be discovered, then linear programming duality theory provides

a general min-max optimality criterion.

So far, the results obtained using this approach have not been as

successful for the travelling salesman problem as for these othe: problems.

At present no complete characterization of a linear system sufficient to

define the convex hull of the set of incidence vectors of the hamilton cycles

-the so called travelling salesman polytope- is known. The first extensive

study of this polytope was carried out by Gr~tschel [7] as a part of his

*doctoral dissertation. This continued earlier work of Chvatal [1] who intro-

duced the class of " comb inequalities", which is at present the largest

known class of essential inequalities for the travelling salesman polytope.

The necessity of these inequalities was shown by Gr~tschel and Padberg [10].

Other results on the travelling salesman polytope have been obtained by

"'. Gr8tschel [8] and Maurras (13]. However, even though the incompleteness of

* t these linear systems is unsatisfying from a theoretical Doint of view, these

partial systems have provided the basis for successful cutting plane

approaches to "real world" problemr. See Gr6tschel [9], Padberg and Hong (14].
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f There is a problem that arises when dealing with the travelling salesman

polytope that does not arise when dealing with the polyhedra of matroids and

matchings: The travelling salesman polytope is not full dimensional. This

means that there does not exist a unique (up to a positive multiple)

minimal defining linear system as there does for these other polytopes. In

fact an inequality can always be replaced by another obtained by multiplying

by a positive constant and adding any linear combination of the equations

which define the affine space containing the polytope. Generally, full

dimensional polytopes seem more pleasant to handle, so what is often done

when studying the travelling salesman polytope is to consider, in fact, the

so called monotone travelling salesman Dolytope: the convex hull of the

incidence vectors of the hamilton cycles

and all subsets of hamilton cycles of a graph. Then the travelling salesman

polytope is a face of this larger polytope, the face obtained by requiring

(x CE) = IV.

We study here a different full dimensional extension of the travelling

salesman polytore. If the number of nodes of G is odd, then, again, the

travelling salesman polytope is a proper face of this larger polytope. In

the next section we introduce this polytope and completely characterize all

the essential inequalities of a defining linear system which can be scaled

so as to have 0-1 coefficients. In Section 3 we prove several necessary

properties of any non 0-1 essential inequalities, and give a class of such

inequalities. These inequalities have the property that for G sufficiently

large, any desired consecutive pair of positive integers can be obtained as

coefficients. Finally, in Section 4, we relate the results of Section3 to the

previous known classes of essential inequalities for the travelling sales-

man polytope. In particular, we show that there exists a natural injection

of the set of facets of the travelling salesman polytope into the set of

facets of our Dolytooe.

One point of terminology should be clarified at this point. A facet of a

polytope P is a maximal nonempty proper face, that is a face of dimension

one less than that of P. A facet inducing inequality is any inequality which

is satisfied by all members of P, and satisfied with equality by precisely

the members of some facet F of P. For general polytopes, if we have a
minimal defining linear system, then there will be exactly one facet

inducing inequality for each facet of P. If the polytope is of full
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dimension, then every inequality in the srstem will be facet inducing.

However if the polytope is not oF Full dimension, then this minimal

defining system will also include sufficient linear equalities or inequalities

to determine the affine space containing the polytope.

2. Tours and {0,2} - matchinos

For any edge j of G = (V,E) we let *(i) denote the two nodes of G

incident with j. For any S C V we let 6(S) denote the set of edges

having exactly one end in S and we let y(S) denote the set of edges having

both ends in S. W, *bbreviate 6({v}) by (v) for v E V. For any

J C E and any vector x = (x.: I E E) we let x(J) = E (xj: j E J). If

K is any graph, we will somet-nes use E(K) and V(K) to denote the edge

set and nodeset respectively of K.

Now consider the following linear system:

(2.1) 0 x. S 1 for all j E E,

(2.2) x(6(i)) 2 for all i E V,

(2.3) x(y(S)); Isi - 1 for all S C V, JS1 Z 3.

We define a tour to be the incidence vector of the edges of a hamilton

cycle of G. It is easily verified that the integer solutions to (2.1) - (2.3)

are the tours of G and all incidence vectors of collections of node-disjoint

paths. Moreover, if the inequalities in (2.2) are replaced by equations, then

the integer solutions are precisely the tours. (This latter system is one of

the earliest integer programming formulations of the travelling salesman

* problem (Dantzig, Fulkerson, Johnson [2])). The constraints(2.2) are called

degree constraints; the constraints (2.3) are called subtour elimination

constraints.

Now suppose we remove the upper bound from (2.1). That is, we replace it

with

(2.4) 0 9 x. for all j E E.

The set of 0-i valued solutions obviously remains unchanged but the set of

integer solutions is greatly enlarged. A 1-matching of G is a set of edges

meeting each node at most once. We say that it is perfect if it meets each

node exactly once. Let M be a 1-matching of C and let x = (x.: j E E)

be defined by i0_| if E E-M

x,12 if j E M.

.1'
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We call such a vector a {0,2) - matching of G. It is easily verified that

any (0,2) - matching x satisfies (2.2) - (2.L). Conversely, if we let

P(G) denote the convex hull of the tours and (0,21 -matchings of G,

then P(G) is the covex hull of the integer solutions to (2.2) - (2.4).

This follows From the observation that any integer solution to (2.2)-

(2.4) other than a tour or a (0,2}-matching can be written as a convex

combination .5 x1 + .5 x2 where xI and x2 are (0,2}-matchings.

In the case that IV I is even, any tour can also be expressed as

.5 x1 + .5 x2 , chosinq xI and x2 as the two complementary perfect

{0,2}-matchinrs contained in the edges of the tour. Thus when I VI is even

the vertices of P(G) are just the {0,2}-matchinvs. However, when I VI is

odd, the situation is ouite different. Let TSP(G) denote the travelling

salesman polytope of G, i.e.,the convex hull of the set of tours of G.

Then TSP(G) C P(G) and if I V
! is odd, then TSP(G) is the face of P(G)

obtained by taking the intersection of P(G) with the affine space defined by

(2.5) x(6(i)) = 2 for all i E V.

This is because a graph with an odd number of nodes cannot have a perfect

1-matching and therefore if x is a (0,2) -matching of G, then there

must exist at least one node v for which x(6(v)) < 2. Conversely, every

tour of G satisfies (2.5). Therefore, our objective in this section is

to determine several classes of facets of P(G) which we wll then relate to TSP(G).

For any S C V we let G[S] denote the node induced subgraph of G

induced by S. We say that S : V is hypomatchable (or 1-critical) if for

every v E 3, the graph G[S - (vii has a perfect 1-matching. Necessarily,

this implies that ISI is odd. Let Q = (S C V: S is hypomatchable} and

let M(G) be the convex hull of the incidence vectors of the 1-matchings

of G. Edmonds [31 proved the following:

Theorem 2.1 M(G) = (x E I]E

(2.6) x. 0 for all j E E,

(2.7) x(d(i)) 9 1 for all i E V,

(2.8) x(y(S)) 9 (ISI - 1)/2 for all S E Q}.

(In fact, the theorem as stated by Edmonds had Q equal to the set of all

odd cardinality subsets of V. However, the restriction to hypomatchable

sets is implicit in his algorithm used to prove the theorem.) This system

of inequalities is "almost" minimal. Pulleyblank and Edmonds [15] showed that

all the inequalities (2.6) are necessary, all the inequalities (2.7) which d9
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not violate a rather technical condition are necessary and an inequality

(2.8) is necessa-,y if and only if G[S] is noseparable, i.e., contains

* no cut node.

Since a vector x is a {O,21 - matching if and only if x/2 is the

incidence vector of a 1-matching, a linear system sufficient to define the

convex hull of the set of 2-matchings of G can be obtained by simply

doubling the right and sides of the linear system (2.6) - (2.8), and

trivially, this linear system defines P(G) for IV! even. But when l

is odd, there is an inequality of the form (2.8) which requires

x(E) 5 IVi - 1 , and of course, every tour of G violates this inequality.

Since P(G) contains all {O,2}-matchings of G, P(G) is of full dimension

Therefore for each facet F of P(G) there exists a unique (up to a positive

multiple) inequality ax a such that F = {x E P(G) : ax = aland

every x E P(G) satisfies as a. Moreover, the set of all such inequalities

is the minimal defining linear system which we would like to find. Unfortu-

nately, we are unable to explicitly describe this system, but in the

following three propositions we define three classes of such facet-inducing

inequalities. We will then show that every facet-inducing inequality with

0-1 coefficients belongs to one of these classes.

Proposition 2.2 For every j E E, xj Z 0 induces a facet of P(G).

tt) Proof. Let 0 denote the zero vector indexed by E and let u k for

k E E denote the vector which is zero everywhere but the kth  coordinate
k k

and uk = 2. Then (o} U {uk: k E E - (j)} is a set of IEI affinely

independent vectors satifying x. 0. Since (m E P(G): x. 0) is a

proper face of P(G), the dimension of this face is JE - 1 and

the result follows.

It is clear that those graphs G which have isolated nodes are uninteresting

from a point of view of P(G), since, their deletion leaves the polytope

unchanged. Henceforth we will always assume that C has no isolated nodes,

however, G need not be connected. Of course, if G is not connected, then

there exist no tours so the result really reduce to results on M(G).
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Proposition 2.3 For every v E V, x(6 (v)) : 2 does not induce a facet
of P(G) if and only if v has a single neighbor w E V and

S(W) #6(v).

Proof. If v has a single neighbor u then any x E P(G) satisfying

R(6(v)) 2 also satisfies x(6(u)) = 2. If there exists k E 6 (u) - 6(v)
k

then the unit vector u defined in the proof of Proposition 2.2 satisfies

u((u)) = 2 but uk ((v)) = 0. Therefore {x E P(G): x(6(v)) = 2) is not

a maximal proper face of P(G) and so x(6(v)) = 2 does not induce a

facet.

Conversely, suppose that v has a single neighbor w but 6(w) = 6(v).

Let h E S(v). For any j EE - 6(v) let uj be defined by

0 if k {h,j)

k 2 if k E (h,j}.

Then j: i F E - 6(v)) U {uk: k E 6(v)} is a set of !E1 affinely

independent (0,2}-matchings of G, all satisfying x(6(v)) = 2. Therefore

x(S(v)) ; 2 induces a facet of P(G).

Finally suppose that v has more than one neighbor. Then for any

j E E - 6(v) there exists a (0,2)-matching u] which is zero everywhere

except for the jth component and one component corresponding to a member of
6 (v). Then, as before, {5: j E E - 6(v)) U (uk: k E 6(v)) is a set of

tEl affinely independent (0,2)-matchings of G satisfying x(6(v)) = 2,

so x(S(v)) Z 2 induces a facet of P(G).

t []

In fact, the preceding two propositions and the following one follow

immediately from the facet characterizations [i of the matching polytope

M(G). For suppose that ax 5 a is a facet inducing inequality for M(G)

and that ax 5 2a is a valid inequality for P(G). Then there is a set M

of 1EI affinely independent incidence vectors x of 1-matchings all

satisfying ax = a. The set M c (2'x : x E M) is then a set of tEI
affinely independent (0,2)-matchings all satisfying ax = 2a , which

establishes that the inequality is facet inducing for P(G).

.!. -
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If IVI is odd, then, of course, no perfect 1-matching or (0,2}-matching

of G can exist. Thus we define an nD('near perfect") 1-matching to be

a 1-matching which contains an edge incident with every node of V but

one. Similarly, an p-{O,2)-matching is a (O,2}-matching x of G satis-

fying x(E) = IVI - 1. In other words, only one node is unsaturated. Then

a graph G is hypomatchable if and only if for every v C V, there exists

an np-{0,2}-matching (or a np-l-matching) which leaves v unsaturated.

In [15], the following theorem was proved.

Theorem 2. 4 If 7 is a nonseparablehypomatchable graph, then there

exist I'E nr-1-matchin.s of G, whose incidence vectors are affinely

independent.

This result was proved constructively, via an algorithm which actually

constructed the np-l-matchings. Using this result, it was then shmwn

that for S C V such that ISI Z 3, G[S] hypomatchable and non-

separable, the inequality x(y(S)) : (ISf - 1)/2 induces a facet of M(G).

A shorter, nonconstructive proof of this result has been obtained by Lovasz,

which we describe here.

Lemma 2.5 For every S C V such that IS! 3 and G[S] is hypomatchabie

and nonseparabte, x(y(S)) L (ISI -1)/2 induces a facet of M(G).

Proof. (Lovasz). Let X be the set of incidence vectors x of i-matchings

of G which satisfy x(y(S)) = ((SI -1)/2. Since the inequality

x(y(S))L (!S1 -1)/2 is easily seen to be satisfied by all members of

M(G), all we need show is that the affine rank of X is equal to (El, or
in other words, there is a unique (up to a positive multiple) nonzero

vector a = (a.: j E E) and scalar a such that ax = a for every

x E X. To do this, we will show that any such a must satisfy a. k

for some constant k, for all j E y(S) and a. = 0 for all j E E - y(S).

ror then if we "scale" a by dividing every componpnt by k we see that

this inequality must be a scalar multiple of the inequality x(y(S)) 5 (IS[ - 1)/2.

So suppose there exists i E S such that a. takes on different values

for edges in (i) n y(S). Let the graph G' be obtained from G[S]

by "splitting" i into two nodes i' and i'' such that all the edges j

of s(i) n y(s) for which aj takes on the minimum value are incident1!
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with i' and all the others are adjacent with 1" . Since G[S] was nonse-

parable, I' is connected and in addition must have a perfect I -matching.

For if not, by Tutte's theorem (16], there would exist a nonempty subset Y

of the nodes of r' such that deleting Y creates more than IYI odd car-

dinality components. But then it is easily verified that for any node vE Y

if we let v' be the node of G corresponding to v , the graph G[S-{v'}]

does not have a perfect 1-matching contrary to G[S] being hypomatchable.

So let x be the incidence vector of a perfect matching of q', and let

j' E 6(i') and j" E 6(i") be such that x*, = x*,, = 1. Let x and x beSi J

obtained from x* b, setting the j' aiud j" components respectively to zero.
1 2 1 2

Then x , x E X but ax > ax , a contradiction to ax a for all x E X.
Therefore, the value of a. is constant for all J ey(S) Moreover, it isJ
easily verified that for every j E E - Y() there exists x' E X such that

x'.= 1 . Moreover, the vector x" obtained from x' by setting the j - thI
component to 0 also belongs to X . Therefore, we must have a. = 0 forI
jEE-X(S) and the result follows.

Proposition 2.6. For every SEV such that JSi Z3 and G[S] is hypo-

matchabZe and nonseparable, x(y(S))!;( SJ -1) induces a facet of P(G).

Proof. This is an immediate corollary of Lemma 2.5. []

The important difference between Lemma 2.5 and Proposition 2.6 is that in

the latter we were forced to restrict S to being a proper subset of V

because every tour of G violates the inequality x(E) : IVI- 1 . For the case

S= V , we have the following result for P(G)

Proposition 2.7. Let G'=(VE') be a spanning subgraph of C which is

hypomatchabZe , nonseparabZe and nonhamiZtonian and such that E' is

maximaZ with this property. Then x(E') Iv -1 induces a facet of P(G).

Proof. Since G' is nonhamiltonian and IvI is odd, every member of P(G)

must satisfy x(E') IvI -1 . All we need show is that there exist JEl af-

finely independent members of P(G) , all of which satisfy x(E')= IVi- 1

First we note that since G' is nonseparable and hypomatchable, it follows

from Proposition 2.4 that there exists a set X of IE'I affinely indepen-

dent incidence vectors of np - 1-matchings of G' . Let X be obtained from

X by taking each x E X , doubling it and defining the j - th component to be

zero for all E-E' . Then X is a set of IE'I affinely independent

np- {0,2}-matchings of G . Moreover, x.0 for all jEE-E , for all

1 xrX . For each jG E-E' , there exists a hamilton cycle whose edges are

contained in E' U {j} , by the maximality of E' . Let tj be the tour cor-

< ......-



-10-

responding to such a hamilton cycle. Then tJ(E')= IV-I , for all jEE-E'

and we let T= {t: j EE- E'}. it is easily seen that TUX is a set of

JEl affinely independent members of P(G) all satisfying x(E')= VI- 1

since for j EE- E' , t3 is the only member of TUX for which the j-th

component is nonzero.

We note that if G is nonhamiltonian, then the inequality of the previous

proposition is simply x (E) - VI - 1 which is facet inducing for P(G) if and

only if G is nonseparable and hypomatchable. However, when G is hamilto-

nian, then G' must be a proper spanning subgraph of G , which is therefore

not node induced. In general, the number of these subgraphs is very large.

We make use of one more preliminary result. For any X C V let c(X)

denote the number of components of G[V-X] having an odd number of nodes.

Tutte's classical theorem characterizing those graphs having perfect 1-mat-

chings is the following:

Theorem 2.8 (Tutte [16]). G has a perfect 1 -matching if and only if for

every X - V, XI c(X)

A less classical theorem characterizing those graphs which are hypomatchable

was proved independently by Pulleyblank and Edmonds [15] and Lovasz [11].

Theorem 2.9. G= (VE) is hypomatchable if and only if IVI is odd and for

every nonempty XC V , IXI Z c(X) .

Of course, the important part of this theorem is the sufficiency of the con-

dition, i.e. the assertion that if G is not hypomatchable and !VI is odd

then there exists nonempty X C V such that IxI <c(X) . It is not difficult

to strengthen this in the following manner.

Corollary 2.10. Let G=(VE) be a nonhypomatchable graph with IVI odd.

Then there exists nonempty X* C V which maximizes c(X) -IXi over all

nonempty X C V , and such that G[V-Y*] consists only of (at least

4 IX I +1 ) hypomatchable components.

Proof. We prove by induction on IVI . If IvI =1 then G is hypomatchable;

if IVi= 3 then the assertion is easily checked. Suppose G has k nodes and

the result is true for all smaller graphs. By Theorem 2.9 there exists non-

empty X C V such that c(X ) -lXi >0 , let X* be chosen such that c(X* ) -

, I x*I is maximum and, subject to this, the number df nonhypomatchable components

of G[VI-X*] is minimum. If there are no such components, then we are done, so

-V- - . 2



suppose that S is the nodeset of a nonhypomatchable component. If ISj is

odd, then by induction there is $* XS C S such that G[S-XS] consists of

at least IXsI + 1 hypomatchable components. Then

c(X*UXS) - IX*UXsI c(X*) - !x*I

but G[V-(X*UX s)] contains fewer nonhypomatchable components than does,S

G[7-X I, a contradiction. If IS[ is even then let v be any node of S

which is not a cutnode of G[S] and let X' = XU (v} . Then

c(X') - IX'I = c(x) - XIX*

and if G[S-{v}] is hypomatchable, then we have contradicted the choice of

X If not, then as before we use induction to find XS E S-{v} such that

X' U XS  contradicts the choice of X . []

Our next theorem provides a characterization of all those facet inducing

inequalties of P(G) which can be scaled so as to have 0- 1 coefficients.

Thus we say that an inequality ax Sri is a 0 -1- inequality if every a. E]
(0 , -1 , 1} We will also say that such an inequality is a 0 - k - inequality if

every a. E (0 ,-k , k} for some positive real number k . Then, of course, to

any 0- k - inequality there corresponds a (unique) 0- 1- inequality obtained

by multiplying by 1/k.

Note that this definition allows us to consider the inequality x. 0 f6r

j E £ (equivalently, -x. i 0) as a 0 - 1 - inequality. It might be asked whether

there exist other facet inducing inequalities ax La for P(G) having a. <0

for some j . We can answer this in the negative; all others are obtained from

nonnegativity constraints by scaling.

Lemma 2.11. If axS a is a facet inducing inequality for P(G) having

aj < 0 for some j E J, then this inequality must be aix 6 0.

Proof. Since P(G) is of full dimension, if we let M be the set of (O,2}-

matchings x of G satisfying ax =a and let T be the set of tours t of

G satisfying at =a then the affine rank of X=MUT must be El . There-

fore ax= a is the unique hyperplane containing all elements of X . Suppose

a.< < . If there existed , EM for which ?>0 , then setting the j-th com-

* ponent of : to 0 would yield another {0,?} -matchinF' of G violating

axL a . If there existed t with t. >0 , then setting the j -th component

to zero gives the incidence vector x of a hamilton path of G , for which

it- . .. .
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ax > a. But x is the average of two (0,2)-matchings of G, at least one

of which must violate ax S a. Thus we must have x. = 0 for all x E X3
so ax S a is a positive multiple 9f the nonnegativity constraint -x. 5 0.

For any J C E we let r(J) denote the maximum nossibip value for

x(J) for all {0,2}-matchinrs and tours x of 0. This "rank" function

is important for it is the smallest possible value for a if the

0-1-inequality x(J) < a is to be valid for P(ri). "oreover, if a > r(J),

then no member of P(C) can satisly x(J) = a. Thus r(J) is the only

possible value for a if x(J) a a is to induce a facet of p().

Finally, let W denote the set of all v G V such that either v has

at least two neighbors, or, if v has a single neighbor w, then S(v) (w).

Theorem 2.12 The following is the complete set of facet inducing

0-1-inequalities of P(G):

(2.9) xj : 0 for all j G E

(2.10) x((i)) s 2 for all i E W

(2.11) x((S)) s - I for a S V , Is 3,

a[ S] nonseparable, hypomatchable

(2.12) x(E') s IVI - 1 for all edae maximal spanning subgraphsG' (V,E')

of G which are hypomatchable, nonhamiltonian"

and nonseparable.

Proof. We saw in Propositions 2.2,2.3,2.6 and 2.7 that all these inequalities

do induce facets of P(G). Now we show that every facet inducing 0-1-inequality

is of one of the above types. Let ax S a be facet inducinq. By Lemma 2.11

if ax a a is not of the form (2.9) we must have a a 0, so let

E' = {j E E: a. l}. Then the inequality ax 5 a must be x(E') S r(E').

Jack Edmonds observed, in the context of matroid polyhedra, that if such

an inequality is facet inducing, then two properties must hold: First, E'

must be closed, i.e., for every j E E - E', we must have r(E' U (j}) > r(E').
Otherwise x(E' (J {j}) S r(E' U fjj) = r(E') would be a stronger valid

inequality than ax S a, contradicting the necessity of a facet-inducing

inequality. Second, E' must be nonseparable, i.e. there cannot exist

nonempty S,T C E' such that S U T = E' and r(S) + r(T) = r(E'). For

in this case, the inequality x(E') S r(E') is implied by the sum of the

inequalities x(S) S r(S) and x(T) S r(T) which means that it can be

t



- 13 -

replaced with these two different inequalities, again contradicting the

necessity. So we know that E' is closed and nonseparable.

Let V' be the set of nodes incident with edges in E'. If the graph

G' = (V',E') has a perfect (0,2}-matching or contains a hamilton cycle

of G, then r(E') = IV'I and so ax 5 a is implied by one half of the sum

of the degree constraints for the nodes in V'. Since the degree constraints

are valid inequalities the facet ax ! a can be necessary only if it is

identical to a degree constraint (2.10). Furthermore the assumption that G'

has a perfect (0,21- matching means that V' = (u,v} and A(u) = (v) = E'

Now suppose that 0' is hypomatchable. Then r(E') = IV'IJ - 1. If v' V,

then since E' is closed we must have E' = y(V'). If G' were separable,

then E' would be separable, so we must have C' = G(V'] is hypomatchable,

nonseparable, so that ax < a is an inequality of the form (2.11). If
V' = V, then G' is a hyDomatchable non-hamiltonian snanning suhpraoh of G

which must also be nonsenarable and edge maximal with these oronerties,

since E' is closed and nonseparable. Thus ax a is a constraint of

the form (2.12).

Next, suppose that G' is not hypomatchable, but !V'j is odd. By

Corollary 2.10 there exists nonempty X C V' such that G'[V' - X] consists

of at least IXI + 1 hypomatchable components, and c'(X) - IX! is

maximized, where c'(X) denotes the number of odd components of G'[V' - X].

If we sum the degree constraints (2.10) for the nodes of X and the con-

straints (2.11) for the node sets of the components of G'[V' - X] (or the

nonseparable blocks of these components if they contain cutnodes) then we

obtain a valid inequality x(E) S IV'! - (c'(X) - JXI), where E D E'.(If

some of these components are single nodes, the constraint (2.11) is trivial

and can be dropped.)We will show that r(E') = IV'I - (c'(X) - (Xl)

which will contadict x(E') & r(E') being a facet, since we can obtain it

(or a stronger inequality) from other inequalities.

Clearly r(E') S Iv'I - (c'(x) - 1XI); all we need do is find some
x E P(G) giving equality. Construct a bipartite graph G from G'

having one node v(x) for each x E X, one node v(K) for each component

,K of G'[V' - X] and an edge joining v(x) and v(K) if and only if x

was adjacent (in G') to some node of K. If there is no 1-matching which

4 covers all nodes v(x) for x E X, then by Hall's theorem, there is a set

I

_
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X X such that fewer than nodes v(K) for components K of

G'[V' X1 are adjacent to nodes v(x) for x E X. But then

c'(X -X) - IX - > c'(X) - lx! a contradiction. So we can construct x

by letting x. 2 for each edge corresponding to an edge of a maximum

1-matching of G, x. be defined equal to an appropriate np-{0,2}-matching
* =0ohrieThnx*E

for each component of G'[V' - X] and x. P(G)

and x (E') = 21X I + {(ISI - 1 : S is the nodeset of a component of

G, - X } IV'l - (c'x) - Ix).

The final case to consider is that G' is not hvpomatchable, and

J V'1 is even. Since we assume that G' does not have a perfect 10,2}-

matching we can now use a proof that parallels that of the last two
v

paragraphs. For any v e V' let V" = V' - (v} and c (X) be the nuJmber of

odd components of G'[V"-X]. Consider the maximum value of cV(X) - IXI over

all v E V' and all nonempty X C V". To avoid cumbersome notation we denote

by v and X an optimal solution. By Corollary 2.10 we know that X can be

chosen so that every component of G'[V" - :-] is hypomatchable, since ,V"I

is odd. Let X' = X u {v}. As earlier, by summing the degree constraints for the

nodes of X' and the constraints (2.11) for the components of G'[V" - X] we

get the valid inequality x(E) 5 IV'I - (cV(X) - IX'I). Again this inequality

implies x(E') S r(E') if there exists a matching x E P(G) such that

x (E') = IV'1 - (cV(x) - IX'I). Now consider the bipartite graph G with a

node n(x) for each x E X', a node n(K) for each component K of

G'[V" - X] and an edge joining n(x) to n(K) if x is adjacent (in G') to

some node of K. If there is no 1-matching which covers every node n(x) of

G then, by Hall's theorem, there is a set X C V such that fewer than IXI
; nodes v(K) are adjacent to X.

v - - v
If v E X, then c (X - X) - IX - Xi > c (x) - IXI a contradiction. So v E X.

Let u E X' - and X W CX' - u ) - (v}). Now cu(x) - liI > cv(X) - lxi

which is again a contradiction. So G has a matchinp that saturates X'. As

earlier this matching can be utilized to construct a (0,2}-matchinp x of

G'(V') which satisfies x CE') = IVIi - (cV(X) - IX'1).

Jn

_____________________

- - .- ,
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3. General Facets of P(G)

We discuss three topics in this section. First we establish some

necessary conditions which must be satisfied by any facet inducing non-O-l

inequality of P(G). Second, we describe such a class of non-O-l inequalities

having the following property : For any pair (s,s+l) of consecutive

positive integers, there exists a graph G and a facet inducing inequality

whose coefficients include s and s+l. Third we describe a lifting

procedure which allows us to obtain facets of P(G) from facets of P(G')

for a subgraph G' of G.

Let ax -i a be an integer inequality. We say that this inequality is

non-(C-l) if it is impossible to scale the coefficients so that a. E {O,±I)]
for all j E E. In other words, there exist two nonzero coefficients with

different magnitudes. If t is a tour of r = (V,F), we let E(t) {jEE : t.=1).]

Theorem 3.1 Let axi a be ( v o,-O-Z 7c et ir:P'4 ' no in(7uacZit'j for Dfl)

Let e = {EF :a;tO} and Zet (,4 b7 the subgra4  of r induced by the

edoes in E'. let M be the .-qt of {,}-ratchf!js x oatisfying ax = a

and Zet T be the set of tours t satisfyinj at = a. Then

(J.I) a.>O for a iF+ 4 >O;

(3.2) every x E Af is z -matohia of :;

(3.3) Pf contains a np-mattchng 7eficiert 7t eteru zode of G;
(3.4) any basis of' 2' U '!. "ntai7s -,t least one tour t for which

E(t) C E; there Pxists a basis P of T U M such that everu

tEB satisfies IE(t) - E+I i.

Note that (3.4) implies that G+  is a spanning, hamiltonian subgraph of

G, which of course implies that G+  is hypomatchable. Condition (3.3) adds

that M contains a np-matching of G deficient at every node of G.

Moreover, there exists a basis of M Ii T, thus, a subset of the points

sufficient to uniquely define the facet, consisting solely of np-matchings

and tours which are either contained in G+ or else induce hamilton paths in G.!

ImI, i i| l i
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Proof. Since P(G) is of full dimension, the affine rank of X R M U T

must be lEt, so ax = a is the unique hyperplane containing all elements

of X. Since ax . a is a non-O-i-inequality, Lemma 2.11 yields a 4 0,

which in turn implies a > 0, so (3.1) is immediate. Now we show that G+

must be connected. If not, let K be a compunent of G and let a' and

a" be defined by
a. if j E E(K)

a - 1
- 0 otherwise

0 if j E E(K)
a."

a. otherwise

I

1 2 1 2If there exists x ,x E X such that a'x > a'x , then we can find such1 2 G++
1 x E M. For let t E T. Since we assume G is not connected, E(t) n E

will consist of some number of disjoint paths, and consequently can be

expressed as the average of two {O,2)-matchings x ,x both of which must
2 12

be in M. But then we must have a Sa't : a'x and so one of x ,x
1 2would serve as a substitute for t. Since, therefore, x ,x E M we can

* 1 2
define x equal to x on E(K) and equal to x on the rest of G and then

ax > a, a contradiction. Therefore

(3.5) G+  is connected.

If every x E M satisfied x(6(v)) = 2 for some v E V, then since

every t E T must satisfy t(6(v)) = 2, we must have ax : a being a

degree constraint (2.10). Since we have assumed that ax ; a does not

induce a 0-1 facet, we must have, therefore,

(3.6) for each v E V there exists x E H such that x(6(v)) = 0.

Now we show that

(3.7) every x E M satifies x(E4 ) vc +)I - 1

which will Tean that every x C " irT uces a nr)-matchinp of G

Suppose that some x E M satisfies x(6(ufnE+) = x(6(v)nE +) 0

for some u,v E V(G+). Assume that x,u and v are chosen so that the

distance in G+ from u to v is minimum. (This is well-defined in view

of (3.5).) If u and v were adjacent in G , then by defining x. = 2 for an

edge of G joining u and v, we would violate the validity of the

constraint ax a a. There therefore exists a node w on a shortest path

in G from u to v and by (3.6) we can find i E M satisfying i(6(w)):O.Ir 0
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If, starting from w, we follow the path in G+, consisting alternately of

edges with x. = 2 and x. 2, and replace the values of x. with those

of x. for the edges in the path, then we will obtain a (0,2)-matching

x* E M deficient at w and (at least) one of u,v. But this contradicts

the minimal distance property of x,u,v. Thus IV(G+ ) is odd and (3.7)

is established.

If T Q1, or if there exists a basis B of M U T which is contained

in M, then ax a a must be the constraint x(E+ ) I 'V(G)I - 1 since,
by (3.7), every element in the basis satisfies it as an equality. This is a

0,1 facet an! thus it must be of the type (2.11) or (2.12) by Theorem 2.12.

Since we assume ax , a. is not a 0-1-constraint, therefore, every basis of

M U T contains at least one tour.

(We remark that to this point this proof parallels a proof of Lovasz

(12], who gave a nonalgorithmic proof of the sufficiency of the linear

system (2.6)-(2.8) for the 1-matching polytope.)

So we must have T t 0. We will show

(3.8) for any tour t E T, either E(t) E E+ or else E(t) induces a

___hamilton p th in G •a
For suppose E(t) E . Then there is j C £(t) with a. = 0 and

-
E(t) - {j) consists of the edges of an even length path of G. This path

can be expressed as the average of two complementary np-matchings x and
12 1

X 2 of G, and at = .5 ax1 + .5 ax2 = a which implies that x ,x2 E M

(since every x E P(G) satisfies ax S a). If E(t) n E is not a hamilton

path of G4+, then it is easily verified that one of x1,x 2 will violate

(3.7). Thus (3.8) is established.

Now in order to complete the proof, we must show that
(3.9) there exists a basis B' of T U M such that every t E B

satisfies JE(t) - E+j 1.

This will imply that G is a spanning sub.rarh of G, and hence

(3.7) will imply (3.2), which combined with (3.6) will prove (3.3).

Let B be a basis of M U T containing a minimum number of tours t

for which IE(t) - E+1 > I, and suppose that t is such a tour. Then E(T)

induces an (even length) hamilton path n0  of G , amd E(i) - E+  consists

of a single odd length path n, which contains an even number of nodes

(including the end points u,v which are nodes of G+). See Figure 3.1.

,,,, 1.,. .
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Figure 3.1

Moreover, since IE(T) - E+j > I, we have IE(r1 Z 3. Now for each
w E V V(nI) - {u,v}, let xw be the np-matching of C obtained by

taking the (unique) perfect matching of the path obtained from i by

deleting !.

Let s G V(G+) - {u,v} and let x E M satisfy iC6(s)) = 0 and
Xj = 0 for all j i+. (y (3.6), there exists x E M satisfying the

first property, and we can simply require x. 0 for all j E E - E+.)

Finally, let x be obtained from x by giving x. the value two for the
1 3

second,fourth,etc. edges of n . Then E E M. Now it can be easily verified

that

v*I z (xw : w E V* ) + -

so ' is a linear combination of M+ ( xw  w E V* } U ( x, x }

Moreover, a at = (l/IV*f) E (axw wE V*) + a - a so we must have

Z_( axw : w E V* ) iV*I a. But since every xw satisfies axw & a, we

must have, therefore, axw = a for all w E V*. Therefore Mt C M, and

so any basis of B - Mt} U Mt will be a basis of M U T which contradicts

our choice of B. Thus (3.9) is established.

Finally, note that if there existed a basis B of M U T such that

every tour t E B satisfied IE(t) - E+l = 1, then every x E B would

satisfy x(E+) = IVI - l,so our constraint wouli necessarily be the inequality

x(E+ ) s IvI - 1 which induces a 0-1-facet of the form (2.12). Thus

(3.4) is established and the proof is complete.

The consequences of this theorem are quite important. It shows that any

facet inducing non-0-l-inequality must come froma (spanninp) subgraphof

* G which contains hamilton cycles of G. We now examine such a class of facets.Cl
SI
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A simple example of a graph G for which P(G) has a non 0-1 facet

is the graph of Figure 3.2 (a). If we let a ( a. j E E ) be the

vector of edre coefficients indicated in the figure, then ax . 14

a facet of F(G).

G G'

(a) (b)

Figure 3.2 Graph G for which P(G) has a non 0-1 facet.

It is easy to verify that the inequality is valid; we show that it is a

facet by exhibiting IE(G)I = 12 affinely independent members of P(G)

satisfying ax = 14. These will consist of eleven (0,2)-matchings

and one tour. In order to obtain the (O,2)-matchings, we consider the

seven np-(0,2}-matchings of the centre heptagon and extend eaohito a

np-(0,2}-matching of G by setting x. = 2 for the edge j joining
3

u and v. These are easily seen to be independent and use only the edge j

of the graph G' obtained by contracting the heptagon. (See Fig. 3.2 b).

We can give anv one of the other fovr et-es of G' the value two

and extend it to a np-{0,2}-matching of G which is near perfect on

the heptagon, and thereby obtain four more. Finally, the unique tour in

G is affinely independent from the (0,2)-matchings and so we are done.

Notice that the idea of the construction was to take a large set of

np-{0,2}-matchings which were also near perfect on a certain induced

subgraph, and then complete them with a tour. This provides the basis for

a general construction.

Let G' (V',E') be a subgraph of a hamiltonian graph G. We define

T (G') Z JV'J - max { t(E') : t is a tour of G }.

We call T the segment number of G'; it equals the smallest number ofI
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segments of some hamilton cycle of G which cover all the nodes of G'.

For example, if H1 is the heptagon of Figure 3.2 a, then T (H) 2.

If G is non hamiltonian, then the function T is not defined.

For any S C V for a graph G = (V,E) we let G x S denote the

graph obtained by contracting the subgraph G [S] to a single pseudonode.

Thus, in Figure 3.2, G' - G x V(H).

Theorem 3.2 . Let G = (V,E) be hamiltonian, let 7'= (V'E ') be a. node

induced subcraph of G and suppose that

(3..10) G' is hyromatchable and nonseparabZe

(3.11) G x V1 is hupomatchable --d nonseparable.

Let a =( a.: jE F ) be defined by
a. -

T (G') --. 'or JE E'

17 (G' ) -1 for .jE E - El

and let
a _ Se -G (jv j - 1 ) + Iv II - .

Then ax L a induces a fPcet o" P(().

Proof. We first proof the validity of ax L a. If x is a {0,2}-

matching of G, then x (E) IVI - 1 and x (E') IV'I - 1 and

ax S a. Moreover ax = a if and only if X is near perfect on both G

* and G'. If 7A is a tour of G, then ( CE) = JVJ and X- (E') S !V'I-T(G')

so ax = T(G')x(E') + (T(G')-I)x(E-E') S (T(G')-I)(IVI-l) + IV'I a,

and we have ax = a if and only if x (E') = Ivi - T(G'). Since ax a

is valid for all vertices of P(G), it is valid for P(G).

We show that ax < a is facet inducing by exhibiting El affinely

independent members x of P(G) satisfying ax = a. By (3.10) and

Proposition 2.4, there are IE'l affinely independent np-{0,2}-matchings

of G'. Let x be any np-{0,2}-matching of G x V' which is deficient

at the pseudonode V'. We extend each of our np-{0,2}-matchings

of G' to a np-{0,2}-matching of G by defining it equal to x on

E - E'. Let X0 be the set of affinely independent matchings thereby

obtained. Then ax a' for all x E X°.

4:. "
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By (3.11) and Proposition 2.4 there are IE -E'I affinely

independent np-{0,2}-matchings of G x V'. Let X he such a set, which
- 1

contains x, and let X1 be obtained from X - Ix) by extending each

x E X - {x} to a np-(0,2}-matching of G. Then X' is a set of

IE - - 1 affinely independent (0,2}-matchings of G, each X E X

satisfies ax = a, and it is straightforward to verify that X U X1  is

affinely independent.

Finally, let t be a tour of G satisfying t(E') = T(G'). Then at = a,

and since t(E) = IvI but x(E) = lvi - 1 for all x E X° U X , we see

that X U X1 U (t} is affinely independent completing the proof.
[]

Thus, the example of Figure 3.2 is simply an application of Theorem 3.2,

taking G' to be the heptagon. The smallest grapg G we know for which
P(G) has such a facet inducing non-(0-l)-inequality is the example of

Figure 3.3. We let G' be the triangle, and then x(E - E') + 2x(E') . 8

is facet-inducing.

righthand side = B

Figure 3.3 Seven node graph for which P(G) cannot be described

by a set of (0-1)-inequalities.

The graph of Figure 3.4 is a nine node example of a graph for which P(G)

has a facet-inducing inequality with coefficients 2 and 3. Again G'

is the centet triangle. Then T(G') 3 and 2x(E - E') + 3x(E') : 18

is facet inducing.

2righthand side = 18

Fig. 3.4

I
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We obtain a facet inducing inequality of P(G) for a graph G containing

any desired consecutive pair (s,s+l) of integers as its nonzero

coefficients by a generalization of the construction of Figure 3.4. Start

with an odd polygon P having k nodes, for k a s+l. Then attach s+l

" ears " - paths of length three - to adjacent pairs of nodes of P.

Finally choose some node v* which is an interior node of some ear. Join

v to the non-corresponding node of each other ear. Then for this graph G

it will follow from Theorem 3.2 that I

(s+i) x(E(P)) + s x(E - E(P)) sk + 2s2 + s + k-i is facet inducing

for P(G). See Fiuure 3.5. |

Figure 3.5

Suppose we have a spanning subgraph G' = (V,E') of G and suppose we

know a facet inducing inequality a'× a? for P(G'). We will say that a

facet inducing inequality ax a For P(G) is obtained by lifting a'x a' if

k-

a. =a. for all jE6E'.J .

In other words, we do not change the existing coefficients or righthand

side, we simply define those not previously defined in such a manner that

the resulting inequality induces a facet of P(G).

A simple method of obtaining such inequalities is the following

sequential lifting procedure.

Procedure 3.3 [Sequential Lifting]

Input G (V,E), a spanning subgraph G' = (V,E') and a facet

inducing inequality a'x S a of P(G').
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Output A facet inducing inequality ax ; a of P(G) obtained

by lifting a'x a.

Procedure

[0] Initially, define a. = a.' for j E E' and let S T E'.J ]

S is the set of edges for which a. has been defined.J
[i] For each j E E - S, do the following

[la] Let u,v be the ends of j. Let

a. = min (1/2 (a - ax) : x is a {O,2}-matching
I

of the graph (V,S)[V-{u,vl}

U (a - ax : x is the incidence vector of a

hamilton path in (V,S) from u to v}.

[ib] Let S H S U {j}.

End

Notice that sequential lifting leaves all old coefficients and the

righthand side of the inequality unchanged. The idea is to (sequentially)

define each a. as large as possible r'uch that the inequality will remainI
valid, considering edges in S U {j}. Further, suppose we have a set X'

of IE'! affinely indpendent members. x of P(G') satisfying ax = a.

We can enlarge it to such a set X for ax : a and P(G) by adding

the following step:

[1c] For each x E X , add a new component x. - 0. If the minimum

in [la] was achieved by a {O,2}-matching, let x3 be this

{O,2}-matching extended by defining xFjE 2. If the minimum

was achieved by a hamilton path, let ;j be the tour obtained

by defining x 1. Let X' X"U

Then if we let X be the final X', the " triangular structure " of the xJ

will assure that X is affinely independent. This verifies that ax 9 a

is indeed facet inducing for P(G). This means, of course, that we will

'4 always finish with a 0. (See Theorem 3.1).

Sequential lifting can be applied in many different orders to the edges,

generally resulting in different lifted inequalities.Moreover, there can be

facet indluclnr' inequ.'lities of P((c ohtained bv lifting from a'x a'

but not obtainable by sequental lifting.

jA
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Our main interest in this procedure is that it shows that "unpleasant

facets are, in effect, retained when edges are added to the graph. In

particular, if we were to restrict our attention to complete graphs, Theorem

3.2 and Procedure ?.3 show that for n sufficiently large, there is a

facet inducing inequality containing any desired consecutive Dair of

positive integers among the coefficients.

Finally, we can see, using Theorem 3.1, that the new coefficients

defined by sequential lifting will never be larger than the largest

previously existing coefficient, and generally, these new coefficients

tend to decrease to zero as more edges are added, until some constant

value is obtained. We conjecture the following :

Co.'ecture .7. 4 Let K be the cor.ete crcim on n nodes. Forn
positiwe iteoer s, th~ere exacts sn intcaer ,U'(a) szl t;.t 'o-r n < N(s),

there is Z fac:et ind:xciva a of P(K ) whose coe,'ficients

include az' inte(7ers from 0 to s.

IA
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4. Facets of the Travelling Salesman Polytope

In this section we discuss the relationship between facets of TSP(G)

and facets of F(G). Most studies of TSP(G) are restricted to the case of G

being a complete graph, because solving travelling salesman problems on

complete graphs is polynomially equivalent to the more general problem. An

interestinz feature of the results of the previous sections is that they

do apply to general graphs. However, in this section we too will restrict

ourselves to complete graphs to facilitate comparison with previously known

results.We adopt the notation of qrtschel and Padberp [10] and let Qn de-
T

note TSP(K ) . We let E and V respectively denote the edge set and
n n n

node set of Kn . First we mention two preliminary results.

Proposition 4.1. ([i0] Theorem 2.2.) The dimension of Ql is n(n-3)/2 =

IEnI - V nIn for n 3.

Corollary 4.2. The minimnal affine spa(e-, containing QT is equal to

{xEpn: x(6(i)) = 2 for all iEV }

The importance of this corollary is that it completely characterizes which

inequalities induce the same facet as some presribed facet inducing inequa-

lity for Qn . We summarize this as follows.
T

Corollary '4.3. Let ax: a be a valid inequality for n . Then for any

X = (Xi E.N: iEV n) and any >0 , the inequality

(4.1) (.a)x + E Xix (6(i)) :S4a + 2X(V)
iEVnn

is a vaZid inequality for QT. Moreover, if we let F- {xEQT : ax=a),

then the set of members of satisfying (4.1) with equality is F

If F is nonempty, then every inequality whose corresponding hyperpZane
i intersects QnT i

tn in exactly F is of the form (4.1) for appropriate g4T
and X

Of course, this corollary is a specialization of a fundamental polyhedral

result: The inequalities in a linear system that defines a polyhedron are

only unique up to positive multiples and the addition of equations satisfied

by all members of the polyhedron.

For the remainder of this section, we let P nP(Kn) , for na,3 , We now
n n

prove a basic result relating the facets of Qn and P for n 9 3 , odd.
T nl
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n

It states that for each facet F of Q T, there exists a unique facet F'

of Pn such that F =, F T . This uniqueness is not true for general po-

lyhedra, as illustrated in Figure 4.1. Tn each case the "ridge pole" is a

face of the "tent" and the marked end of the ridge pole is a facet of the

face. Figure 4.1a has the uniqueness property, but Figure 4.1b does not.

Face-4 ,Face

Facet Facet

of Face of Face

F -F I F2

(a) (b)

Figure 4.1

Finally, we remark that the proof of the following theorem will consist of

an algorithm which starts with a facet defining inequality axs a- of Qn
T

and transforms it into a facet defining inequality of P , which defines
nn

the same facet of QT
T

n
Theorem 4.4. For any facet F of QT , there exists a unique facet F'

of P such that F=F'nQ .
nT

Proof. Let F be a facet of QT and suppose that F {xEQn : ax:a}n
where ax5 a is a valid inequality for QT . We assume that a 0 . If not

we add sufficiently high multiples of degree constraints so as to have this

prooerty. If we consider the inequality

(4.2) ax + z xi x(6(i)) a + 2 Z Ni
iEV ~*iEV

we can see that varying xi for a node i has no effect on the feasibility

of a {0 2) matching x satisfying x(((i)) : 2 or on a tour x which

also must satisfy x(6(i)) = 2 . However, if x is a (0, 2) matching defi-

cient at i , then by choosing an appropriate value from Xi , we can ensure

(4.3) every (0 , 2) matching deficient at i satisfies (4.2),

(4.4) there exists an np- (0 , 2) -matching deficient at i which satisfies

(4.2) with equality.

I. . -- -Il I IU I I ... I
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In fact it can be verified that this is given by

(4.5) X. 1/2 max{ax-a :x is a {O,2} -matching of G deficient at i)

Since a 0 , this maximum will always be attained for a near perfect matching.

Since the choice of deficient node provides a partition of the near perfect

matchings, the Xi are determined independently and uniquely. Thus, using

Corollary 4.3, there is a unique (up to a positive multiple) ineouality

that is valid for Q and P induces F and satisfies (4.3) and (4.4),

two necessary conditions for it to be facet inducing for P . This is (4.2)

with . defined as in (4.5). Let F' I (x E P x satisfies (4.2) with
1 n"

equality, for i as in (4.5)1. We show that F' is a facet of F_.

Since F is a facet of 0n , there exists a set T of JEnl - IVnI
T '

affinely independent tours satisfying (4.2) with equality. For each node i

our choice of Xi ensures that there exists a rip- (0,2} -matching xi de-

ficient at i satisfying (4.2) with equality. Let ME {xI : iE V ) . Then for
i n

each iEV , x is the only member of TUM which does not satisfy x(6(i))n

2. Thus it is affinely independent from TU M -(x} . Therefore TU M is

affinely independent of cardinality JEnl so F' is a facet of Pn and
Fn n =F'fl F

n

Perhaps surprisingly, there are presently only three classes of facets for

QT appearing in the literature. The first such class, the so called "trivial"

facets,are those induced by nonnegativity constraints x. 0 for all j E E] n
([10] Theorem 3.2). These obviously correspond to the inequalitities (2.9) for

P.n

The second class of facets are those induced by the subtour elimination con-

straints x(Y(S)) ISI - 1 for SV 2V nSI 2 n-I ([10] Theorem 6.1). For

any such S , the subtour elimination constraints corresponding to S and

Vn - S induce the same facet of Qn . (Simply sum one half the degree con-

straints for all nodes in Vn - S , subtract one half the sum of degree con-

straints for nodes in S and add this to the constraint x(y(S)): ISI- 1 .)

In particular, the edge "capacity" constraints xj i for j EE induce the

same facets as the subtour elimination constraints for the cardinality n - 2

.4 subsets of V . By Theorem 4.4. there exists a unique facet of P which de-n n
termines this "doubly defined" facet of Q . Of course, this is the inequali-

T
ty (2.11) for the odd cardinality one of ISI IVn -SI

The third class of facets, induced by generalized comb constraints is more

complex. Let Wi.V n  for i=O,l,...,k satisfy

(4.6) IW0 nWil a 1 for i:1,2,...,k

(4.7) 1wi-w o l a 1 for i=1,2,...,k

.. .. . . . . . . . .. f 1 , , ,,, . . ... . . . . . . . . . . .. .
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(4.8) 1W nW.j 0 for 15i<jk

k k
Then we call the graph C with nodeset U W. and edge set U y(W.)

i=O i :O

a comb in K. ; W is the handle and W. are called the teeth for i=l,...,k.

The comb inequality corresponding to C is given by

k k
Z x(r(Wi))S 1W01 + E (I W, - 1) - r),/21
i:O i=1

where for r E P , "irrl " denotes the smallest integer no less than r

Note that the coefficients of a comb inequality will be 0,1 or 2. Such in-

equalities were introduced by Chvatal [i] who required equality in (4.6), re-

sulting in a 0- 1- inequality. We call such a comb simple. In a simple comb,

each tooth has exactly one node in the handle. In a general comb, a tooth may

have several nodes in the handle, and all edges ioinirg these nodes have coef-

ficient two in the inequality. A major result of Gr6tschel and Padberg ([10]

Theorem 6.2) is that for k a3 , odd, every comb inequality induces a facet of
n
QT

It is a routine matter to apply the procedure of the proof of Theorem 4.4

in order to find the corresponding facet inducing inequality for P . We
n

illustrate this with the following.

Theorem 4.5. Let C be a simple comb having an odd number k of teeth uch

that iV(C1I is even. If IV(C)I S n -rk/21 , then the facet of Pn cor-

responding to the facet of QTn , induced by the comb inequality for C is

obtained by sequentially lifting a facet of the form of Theorem 3.2 for a sub-

graph G of K .

Proof. Let ax: a be the comb inequality corresponding to C . Let G be

the spanning subgraph of K whose edge set consists of E(C) together with/ n

those edges having at least one end not in the comb. That is, we exclude those

edges both of whose ends are in V(C) , but which are not in E(C) . We will
show first that an application of the procedure of the proof of Theorem 4.4
obtains a facet inducing inequality for P(G) of the form of Theorem 3.2.

We first compute the value X for each iE V as given by (4.5). For
4 n %

iE V(C) , the maximum value of ax for a (0,2)- matching x deficient at i

is i V(C)i - 2 For iE V - V(C) , this maximum is I V(C)1 . Therefore

n.1
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1/2 Uk/2 1 - 1 for iEV(C)
X.=
. 1/2 I'k/2l for iEV -V(C)

When we use these values of X. in (4.2), we obtain the following new1

coefficients a! for each edge j
3

rk/21 - 1 for j EE(C)

a! fk/21 - 1 for j E5(V(C))J

rK/21 for j ey(Vn -V(C))

Now let S- V -V(C) . Then G[S] is a complete graph on an odd numbern

of nodes, and so is hypomatchable and nonseparable. The graph G xS can also

be easily checked to be hypomatchable and nonseparable. Because ISI =n- IV(C)l

a rk/21 , G is hamiltonian. Moreover, the segment number T(G[S]) =T(C)

rk/2 1  so the coefficients a. are in fact given by]

T(G[SI) for j Ey(S)
a! =

T(G[S)- 1 for j EE(G)-y(S)

These then are the coefficients of a facet of the form of Theorem 3.2 for

G , so the resulting right hand side, a' , must equal

(T(G[ S] 1) (n -1) + I S I 1

as prescribed by the theorem.

Now let a"x <a" be the facet of P corresponding to the comb inequality' i n

for C . By again using the procedure of the proof of Theorem 4.4, we see that

a' for jEE(G)

T(C[S] )- 2  for iEE -E(G)

We will complete the proof by proving that the values a.' =t(C[S])-2 for

jEE n -E(G) are those given by sequential lifting.

Suppose that we have sequentially lifted the coefficients for the edges of

some (possibly empty) subset of En -E(G) and obtained the desired value. Let

JEEn -(JUE(G)) . Let u,v be the ends of j , let G3 denote the graph

(VnJUE(G)) , and let '0 denote Gj[vn {u,v}] . Then the maximum value of

a (0,2)-matching of 15 is a'-2(T(G[S])-1) . The maximum sum of the edge
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costs of a hamilton path in G J from u to v is a' - (T(G[S])- 2) . Thus

sequential lifting will define a'.'- (G[S])- 2) and the proof now follows by
I

induction.

Figure 4.2 illustrates a small example of this process. Let C be the ten

node-five tooth comb of

2 X=1/2

o2 7

K13  0 3

G X=3/2

(a) (b)

Figure 4.2

Figure 4.2(a), in K1 3. The comb inequality gives each edge the coefficient 1

and has a =7 . The graph G of Figure 4.2(b) consists of C , the subgraph

induced by the set S of non-comb nodes and all edges joining these two parts.

The procedure of Theorem 4.4 calculates X. 1/2 for the nodes i of C and

X =3/2 for the nodes i of S Thus the coefficients a! are as indicated, three
2. I
for edges of y(S) and two for all other edges and a' =26 . Sequential lifting

7..' will then cause all edges of E13 -E(G) to have the coefficient one, which

induces the facet of P13  corresponding to the facet of QT induced by C

It is certainly possible to study the results of applying the procedure of

Theorem 4.4 to combs having an odd number of nodes. In fact, this can be used

to provide other classes of non -0 - 1 - facets of F . However, for the remain-

der of this section we wish to briefly discuss cases when facet inducing ine-
n

qualities of P induce facets of Q . In particular, for inequalities of then T
4 form (2.12.), those induced by hypomatchable nonhamiltonian nonseparable edge
0 maximal subgraphs. A graph G is sai to be hypohamiltonian if G is nonhamil-

tonian, but G-{v} is hamiltonian for all vE V . It is an easy exercise to

verify that if n is odd, then any edge maximal spanning hypohamiltonian sub-

graph of Kn  satisfies our conditions of (2.12). Gr8tschel [8] showed that

those spanning edge-maximal hypohamiltonian subgraphs of Kn  which satisfy[in



- 31 -

a certain technical property, do induce a facet of the monotone travelling

salesman polytope. (He did not settle whether or not this technical property

was indeed necessary.) Thus there is an obvious correction between our in-

equalities (2.12) and the monotone polytope. For the travelling salesman poly-

tope itself, some inequalities (2.12) are facet inducing and some are not. For

example the inequality (2.12) for the graph G1 of Figure 4.3(a) is facet in-
7ducing for QT , but that of the graph G2 of Figure 4.3(b) is not. (Note that

both graphs satisfy the necessary conditions for (2.12) to apDly, but neither

iS'hypohamiltongan.)

rhs 6
V j

G 1  G2

(a) Facet inducing (b) Not facet inducing

for 7 for Q7

Figure 4.3

The inequality (2.12) for G1 is equivalent to the facet inducing inequa-

lity of the comb obtained by deleting node v . On the other hand, edge j of

G2 belongs to no hamilton cycle of K7  which contains six edges of G2 . There-
2Q 7

fore the inequality (2.12) for QT is implied by the nonnegativity constraint

for edge j

However, there are examples of inequalities of the form (2.12) which are

facet inducing for Q and which do not seem to arise from any known class of

facet inducing inequalities. For example, the inequality 2.12) for the modi-

fied Petersen graph of Figure 4.4 is facet inducing for K 11

Figure 4.4 Modified Petersen Graph
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This can be shown using a slight modification of the proof of Maurras [13]
10

that the inequality x(E) 9 is facet inducing for QT where E is

the edge set of any subgraph which is a Peterson graph.

.1
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5. Concluding Remarks

When we wish to study a polytoDe such as the travelling salesman

polytope, which is not of full dimension, we generally have considerable

choice as to which full dimension polyhedron (if any) we will embed it in.

We have studied, here, a particular polyhedron, P , which has several
n

interesting properties. First (Theorem 4.4), for any facet of QT , there is

a unique facet of Pn which intersects Q in exactly this facet. Thus we

can partition the facets of P into three classes : those that containn

all of n , those that contain no facet of QT , and those thit intersect QT

in a facet. Theorem 4.4 shows that there is a bijection between the facets

in the third class and the facets of Qn

In Theorem 2.12 we completely characterized those facets of P(G), for

general G, for which the inducing inequality can be scaled so as to have

0-1 valued coefficients. The most interesting set of facet inducing 0-1-

inequalities were those of (2.12). At the end of the previous section we

saw that some of these do indeed induce facets of TSP(G) itself.

In Theorem 3.1, we determined several properties possessed by non-O-l

inequalities which induce facets of P(G). One of these properties is that

the subgraph of G induced by the edges having positive coefficients in

such an inequality must be spanning, and indeed, must be hamiltonian. This

has one rather negative consequence : Such inequalities will probably be

harder to use in a cutting plane approach than, for example, the comb inequa-

lities which have been used so successfully by Gr6tschel [9] to solve a

" real world " travelling salesman problem. However, a possible area for

future research would be to see if " sir'pler" equivalent inequalities

(for TSP(G)) can be found for classes of such inequalities.
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(1) We completely characterize those facets of P(G) which can be induced

by an inequality with 0-1-coefficients.
(it) We prove necessary properties for any other facet inducing inequality,

and exhibit a class of such inequalities with the property that for any pair of
consecutive positive integers, there exists an inequality in our class whose
coefficients include these integers.

(iikt) We relate the facets of P(G) to the facets of the travelling salesman

polytope. In particular, we show that for any facet F of the travelling salesman
polytope, there is a unique facet of P(G) whose intersection with the travelling
salesman polytope is exactly F.
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